Diverse and unique viruses discovered in the surface water of the East China Sea

BMC Genomics(2020)

引用 14|浏览37
暂无评分
摘要
Background Viruses are the most abundant biological entities on earth and play import roles in marine biogeochemical cycles. Here, viral communities in the surface water of the East China Sea (ECS) were collected from three representative regions of Yangshan Harbor (YSH), Gouqi Island (GQI), and the Yangtze River Estuary (YRE) and explored primarily through epifluorescence microscopy (EM), transmission electron microscopy (TEM), and metagenomics analysis. Results The virus-like particles (VLPs) in the surface water of the ECS were measured to be 10 6 to 10 7 VLPs/ml. Most of the isolated viral particles possessed a head-and-tail structure, but VLPs with unique morphotypes that had never before been observed in the realm of viruses were also found. The sequences related to known viruses in GenBank accounted for 21.1–22.8% of the viromic datasets from YSH, GQI, and YRE. In total, 1029 viral species were identified in the surface waters of the ECS. Among them, tailed phages turn out to make up the majority of viral communities, however a small number of Phycodnaviridae or Mimiviridae related sequences were also detected. The diversity of viruses did not appear to be a big difference among these three aquatic environments but their relative abundance was geographically variable. For example, the Pelagibacter phage HTVC010P accounted for 50.4% of the identified viral species in GQI, but only 9.1% in YSH and 11.7% in YRE. Sequences, almost identical to those of uncultured marine thaumarchaeal dsDNA viruses and magroviruses that infect Marine Group II Euryarchaeota, were confidently detected in the ECS viromes. The predominant classes of virome ORFs with functional annotations that were found were those involved in viral biogenesis. Virus-host connections, inferred from CRISPR spacer-protospacer mapping, implied newly discovered infection relationships in response to arms race between them. Conclusions Together, both identified viruses and unknown viral assemblages observed in this study were indicative of the complex viral community composition found in the ECS. This finding fills a major gap in the dark world of oceanic viruses of China and additionally contributes to the better understanding of global marine viral diversity, composition, and distribution.
更多
查看译文
关键词
Marine viral community, Surface seawater, Diversity, Archaeal DNA phage, CRISPR, East China Sea
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要