谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Applied-force oscillations in avalanche dynamics

PHYSICAL REVIEW E(2020)

引用 4|浏览51
暂无评分
摘要
Until now most studies of discrete plasticity have focused on systems that are assumed to be driven by a monotonically increasing force; in many real systems, however, the driving force includes damped oscillations or oscillations induced by the propagation of discrete events or "slip avalanches." In both cases, these oscillations may obscure the true dynamics. Here we effectively consider both cases by investigating the effects of damped oscillations in the external driving force on avalanche dynamics. We compare model simulations of slip avalanches under mean-field dynamics with observations in slip-avalanche experiments on slowly compressed micrometer-sized Au specimens using open-loop force control. The studies show very good agreement between simulations and experiments. We find that an oscillatory external driving force changes the average avalanche shapes only for avalanches with durations close to the period of oscillation of the external force. This effect on the avalanche shapes can be addressed in experiments by choosing suitable specimen dimensions so that the mechanical resonance does not interact with the avalanche dynamics. These results are important for the interpretation of avalanche experiments with built-in oscillators, and for the prediction and analysis of avalanche dynamics in systems with resonant vibrations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要