Elevated atmospheric humidity prolongs active growth period and increases leaf nitrogen resorption efficiency of silver birch

K. Rosenvald,K. Lõhmus, G. Rohula-Okunev,R. Lutter, P. Kupper,A. Tullus

Oecologia(2020)

引用 5|浏览7
暂无评分
摘要
Climate models predict increasing amounts of precipitation and relative atmospheric humidity for high latitudes in the Northern Hemisphere. Therefore, tree species must adjust to the new climatic conditions. We studied young silver birches ( Betula pendula Roth) in a long-term (2012–2018) free air humidity manipulation experiment, with the aim of clarifying the acclimation mechanisms to elevated relative atmospheric humidity. In 2016–2018, stem radial increment (measured by dendrometers) and leaf abscission were monitored, and the leaf N and P resorption efficiencies were determined. Biomass allocation was estimated, and the seasonal dynamics of foliar NPK storage was assessed. Humidification increased N resorption efficiency by 11%. The annual means of N resorption efficiency varied from 41 to 52% in control and from 50 to 59% in humidified stands. The P resorption efficiency was strongly affected by weather conditions and varied between years from 25 to 66%. Higher foliar NPK storages at the end of growing season and delayed leaf fall allowed to extend the growth period in humidified plots, which resulted in a week longer stem radial growth. Although stem diameter growth of humidified birches recovered after 5 years, tree height retardation persisted over the seven study years, resulting in increased stem taper (diameter to height ratio) under humidification. Additionally, humidification increased the share of the bark in stem biomass and the number of branches per crown length. The acclimation of silver birches to increased air humidity entails changes in forest N cycle and in birch timber quality.
更多
查看译文
关键词
Climate change, Elevated humidity, Leaf abscission, NPK resorption, Seasonal dynamics, Stem growth
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要