Noninvasive Assessment of Epidermal Genomic Markers of UV Exposure in Skin.

The Journal of investigative dermatology(2020)

引用 5|浏览31
暂无评分
摘要
The measurement of UV-induced DNA damage as a dosimeter of exposure and predictor of skin cancer risk has been proposed by multiple groups. Although UV-induced mutations and adducts are present in normal-appearing UV-exposed epidermis, sampling normal nonlesional skin requires noninvasive methods to extract epidermal DNA for analysis. Here, we demonstrate the feasibility of such an approach, termed surfactant-based tissue acquisition for molecular profiling. Sampling in patients was performed using a felt-tip pen soaked in a mixture of surfactants (Brij-30/N-decyl-N,N-dimethyl-3-ammonio-1-propanesulfonate). In mice, we show that the epidermis can be selectively removed without scarring, with complete healing within 2 weeks. We exposed hairless mice to low-dose UV radiation over a period of 3 months and serially sampled them through up to 2 months following the cessation of UV exposure, observing a progressive increase in a UV signature mutational burden. To test whether surfactant-based tissue acquisition for molecular profiling could be applied to human patients, samples were collected from sun-exposed and sun-protected areas, which were then subjected to high-depth targeted exome sequencing. Extensive UV-driven mosaicism and substantially increased mutational loads in sun-exposed versus sun-protected areas were observed, suggesting that genomic measures, as an integrated readout of DNA damage, repair, and clonal expansion, may be informative markers of UV exposure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要