Triangle Singularity As The Origin Of The A(1) (1420)

Alexeev M. G.,Alexeev G. D.,Amoroso A., Andrieux V., Anosov V., Antoshkin A., Augsten K.,Augustyniak W.,Azevedo C. D. R.,Badelek B.,Balestra F.,Ball M.,Barth J.,Beck R.,Bedfer Y.,Antequera J. Berenguer,Bernhard J., Bodlak M.,Bradamante F.,Bressan A.,Burtsev V. E.,Chang W. -C.,Chatterjee C., Chiosso M., Chumakov A. G., Chung S. -U.,Cicuttin A.,Correia P. M. M.,Crespo M. L., D'Ago D.,Torre S. Dalla, Dasgupta S. S., Dasgupta S.,Denisenko I.,Denisov O. Yu., Donskov S. V.,Doshita N.,Dreisbach Ch., Duennweber W.,Dusaev R. R.,Efremov A., Eversheim P. D.,Faccioli P.,Faessler M.,Finger M.,Finger jr. M.,Fischer H.,Franco C., Friedrich J. M.,Frolov V., Gautheron F., Gavrichtchouk O. P.,Gerassimov S., Giarra J.,Gnesi I., Gorzellik M., Grasso A., Gridin A.,Perdekamp M. Grosse,Grube B., Guskov A.,von Harrach D., Heitz R., Herrmann F., Horikawa N.,d'Hose N., Hsieh C. -Y.,Huber S.,Ishimoto S.,Ivanov A., Iwata T., Jandek M., Jary T., Joosten R.,Joerg P., Kabuss E., Kaspar F., Kerbizi A.,Ketzer B., Khaustov G. V.,Khokhlov Yu. A.,Kisselev Yu., Klein F.,Koivuniemi J. H., Kolosov V. N., Kondo K., Konorov I.,Konstantinov V. F.,Kotzinian A. M., Kouznetsov O. M., Koval A., Kral Z., Krinner F., Kulinich Y.,Kunne F., Kurek K.,Kurjata R. P.,Kveton A., Lavickova K., Levorato S., Lian Y. -S., Lichtenstadt J.,Lin P. -J.,Longo R., Lyubovitskij V. E.,Maggiora A., Magnon A., Makins N.,Makke N.,Mallot G. K.,Maltsev A.,Mamon S. A., Marianski B.,Martin A.,Marzec J., Matousek J., Matsuda T., Mattson G., Meshcheryakov G. V., Meyer M., Meyer W.,Mikhailov Yu. V., Mikhasenko M., Mitrofanov E., Mitrofanov N.,Miyachi Y.,Moretti A., Nagaytsev A., Naim C.,Neyret D., Novy J., Nowak W. -D., Nukazuka G.,Nunes A. S., Olshevskiy A. G., Ostrick M., Panzieri D.,Parsamyan B.,Paul S., Pekeler H.,Peng J. -C.,Pesek M., Peshekhonov D. V., Peskova M.,Pierre N., Platchkov S., Pochodzalla J.,Polyakov V. A.,Pretz J.,Quaresma M., Quintans C., Reicherz G., Riedl C., Rudnicki T.,Ryabchikov D. I., Rybnikov A.,Rychter A., Samoylenko V. D.,Sandacz A.,Sarkar S.,Savin I. A., Sbrizzai G., Schmieden H.,Selyunin A., Sinha L., Slunecka M., Smolik J., Srnka A., Steffen D.,Stolarski M., Subrt O., Sulc M., Suzuki H., Sznajder P., Tessaro S., Tessarotto F.,Thiel A., Tomsa J., Tosello F., Townsend A.,Tskhay V., Uhl S., Vasilishin B. I.,Vauth A., Veit B. M.,Veloso J., Ventura B., Vidon A.,Virius M.,Wagner M., Wallner S.,Zaremba K., Zavada P.,Zavertyaev M.,Zemko M., Zemlyanichkina E.,Zhao Y.,Ziembicki M.

PHYSICAL REVIEW LETTERS(2021)

引用 29|浏览198
暂无评分
摘要
The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the a(1)(1420), decaying to f(0)(980)(pi). With a mass too close to and a width smaller than the axial-vector ground state a(1)(1260), it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the a(1) (1260) resonance into K* (-> K pi) (K) over bar and subsequent rescattering through a triangle singularity into the coupled f(0)(980)p channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the lightmeson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要