谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Identification of a novel phage targeting methicillin-resistant Staphylococcus aureus In vitro and In vivo.

Microbial pathogenesis(2020)

引用 16|浏览37
暂无评分
摘要
INTRODUCTION:Staphylococcus aureus is a common human pathogen that causes various diseases including infections on the skin, in the bloodstream and the lower respiratory tracts. The emergence of methicillin-resistant S. aureus (MRSA) made the treatment of the bacterial infection more difficult, calling for development of new therapeutics. Compared with conventional antibiotic therapy, phage therapy offers a promising alternative to combat infections caused by MRSA. RESULTS:Here we showed that phage VB_SauS_SH-St 15644 isolated from sewage inhibited MRSA isolates in vitro and in the murine skin infection model. Phage VB_SauS_SH-St 15644 belongs to Siphoviridae. The genome of the phage is a linear, 45,111 bp double-stranded DNA with GC content of 33.35%. Among the 37 clinical MRSA isolates tested, 12 (32%) were lysed by the phage in vitro. The phage was relatively stable at temperatures up to 40 °C or between pH 6 and 9. However, the phage was sensitive to UV light. 80% of the phage was approximately adsorbed to the host MRSA isolate in 4 min. The one-step growth curve showed that the latent period was about 12 min followed by the growth period (about 9 min). The burst size was estimated at 13 PFU per infected cell. Furthermore, in a murine skin infection model, the phage significantly inhibited MRSA infection. CONCLUSIONS:Our study suggested that phage VB_SauS_SH-St 15644 has a potential to inhibit MRSA skin infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要