A tetrachotomy of ontology-mediated queries with a covering axiom

Artificial Intelligence(2022)

引用 2|浏览119
暂无评分
摘要
Our concern is the problem of efficiently determining the data complexity of answering queries mediated by description logic ontologies and constructing their optimal rewritings to standard database queries. Originated in ontology-based data access and datalog optimisation, this problem is known to be computationally very complex in general, with no explicit syntactic characterisations available. In this article, aiming to understand the fundamental roots of this difficulty, we strip the problem to the bare bones and focus on Boolean conjunctive queries mediated by a simple covering axiom stating that one class is covered by the union of two other classes. We show that, on the one hand, these rudimentary ontology-mediated queries, called disjunctive sirups (or d-sirups), capture many features and difficulties of the general case. For example, answering d-sirups is Π2p-complete for combined complexity and can be in Image 1 or L-, NL-, P-, or coNP-complete for data complexity (with the problem of recognising FO-rewritability of d-sirups being 2ExpTime-hard); some d-sirups only have exponential-size resolution proofs, some only double-exponential-size positive existential FO-rewritings and single-exponential-size nonrecursive datalog rewritings. On the other hand, we prove a few partial sufficient and necessary conditions of FO- and (symmetric/linear-) datalog rewritability of d-sirups. Our main technical result is a complete and transparent syntactic Image 1/NL/P/coNP tetrachotomy of d-sirups with disjoint covering classes and a path-shaped Boolean conjunctive query. To obtain this tetrachotomy, we develop new techniques for establishing P- and coNP-hardness of answering non-Horn ontology-mediated queries as well as showing that they can be answered in NL.
更多
查看译文
关键词
Ontology-mediated query,Description logic,Datalog,Disjunctive datalog,First-order rewritability,Data complexity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要