Chrome Extension
WeChat Mini Program
Use on ChatGLM

Altered resting-state functional connectivity and effective connectivity of the habenula in irritable bowel syndrome: A cross-sectional and machine learning study

Cui P. Mao,Fen R. Chen, Jiao H. Huo,Liang Zhang, Gui R. Zhang, Bing Zhang, Xiao Q. Zhou

HUMAN BRAIN MAPPING(2020)

Cited 17|Views12
No score
Abstract
Irritable bowel syndrome (IBS) is a disorder involving dysfunctional brain-gut interactions characterized by chronic recurrent abdominal pain, altered bowel habits, and negative emotion. Previous studies have linked the habenula to the pathophysiology of negative emotion and pain. However, no studies to date have investigated habenular function in IBS patients. In this study, we investigated the resting-state functional connectivity (rsFC) and effective connectivity of the habenula in 34 subjects with IBS and 34 healthy controls and assessed the feasibility of differentiating IBS patients from healthy controls using a machine learning method. Our results showed significantly enhanced rsFC of the habenula-left dorsolateral prefrontal cortex (dlPFC) and habenula-periaqueductal grey (PAG, dorsomedial part), as well as decreased rsFC of the habenula-right thalamus (dorsolateral part), in the IBS patients compared with the healthy controls. Habenula-thalamus rsFC was positively correlated with pain intensity (r = .467, p = .005). Dynamic causal modeling (DCM) revealed significantly decreased effective connectivity from the right habenula to the right thalamus in the IBS patients compared to the healthy controls that was negatively correlated with disease duration (r = -.407, p = .017). In addition, IBS was classified with an accuracy of 71.5% based on the rsFC of the habenula-dlPFC, habenula-thalamus, and habenula-PAG in a support vector machine (SVM), which was further validated in an independent cohort of subjects (N = 44, accuracy = 65.2%, p = .026). Taken together, these findings establish altered habenular rsFC and effective connectivity in IBS, which extends our mechanistic understanding of the habenula's role in IBS.
More
Translated text
Key words
effective connectivity,habenula,irritable bowel syndrome,machine learning,resting-state functional connectivity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined