谷歌浏览器插件
订阅小程序
在清言上使用

Engineering Optically Switchable Transistors with Improved Performance by Controlling Interactions of Diarylethenes in Polymer Matrices

Lili Hou, Tim Leydecker, Xiaoyan Zhang, Wassima Rekab, Martin Herder, Camila Cendra, Stefan Hecht, Iain McCulloch, Alberto Salleo, Emanuele Orgiu, Paolo Samori

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 35|浏览30
暂无评分
摘要
The integration of photochromic molecules into semiconducting polymer matrices via blending has recently attracted a great deal of attention, as it provides the means to reversibly modulate the output signal of electronic devices by using light as a remote control. However, the structural and electronic interactions between photochromic molecules and semiconducting polymers are far from being fully understood. Here we perform a comparative investigation by combining two photochromic diarylethene moieties possessing similar energy levels yet different propensity to aggregate with five prototypical polymer semiconductors exhibiting different energy levels and structural order, ranging from amorphous to semicrystalline. Our in-depth photo- chemical, structural, morphological, and electrical characterization reveals that the photoresponsive behavior of thin-film transistors including polymer/diarylethenes blends as the active layer is governed by a complex interplay between the relative position of the energy levels and the polymer matrix microstructure. By matching the energy levels and optimizing the molecular packing, high-performance optically switchable organic thin-film transistors were fabricated. These findings represent a major step forward in the fabrication of light-responsive organic devices.
更多
查看译文
关键词
polymer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要