Catalytic And Photochemical Strategies To Stabilized Radicals Based On Anomeric Nucleophiles

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 35|浏览8
暂无评分
摘要
Carbohydrates, one of the three primary macromolecules of living organisms, play significant roles in various biological processes such as intercellular communication, cell recognition, and immune activity. While the majority of established methods for the installation of carbohydrates through the anomeric carbon rely on nucleophilic displacement, anomeric radicals represent an attractive alternative because of their functional group compatibility and high anomeric selectivities. Herein, we demonstrate that anomeric nucleophiles such as C1 stannanes can be converted into anomeric radicals by merging Cu(I) catalysis with blue light irradiation to achieve highly stereoselective C(sp(3))-S cross-coupling reactions. Mechanistic studies and DFT calculations revealed that the C-S bond-forming step occurs via the transfer of the anomeric radical directly to a sulfur electrophile bound to Cu(II) species. This pathway complements a radical chain observed for photochemical metal-free conditions where a disulfide initiator can be activated by a Lewis base additive. Both strategies utilize anomeric nucleophiles as efficient radical donors and achieve a switch from an ionic to a radical pathway. Taken together, the stability of glycosyl nucleophiles, a broad substrate scope, and high anomeric selectivities observed for the thermal and photochemical protocols make this novel C-S cross coupling a practical tool for late-stage glycodiversification of bioactive natural products and drug candidates.
更多
查看译文
关键词
photochemical strategies,radicals,catalytic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要