Restraint stress increases the expression of phoenixin immunoreactivity in rat brain nuclei.

T Friedrich, M A Schalla, R Lommel, M Goebel-Stengel,P Kobelt,M Rose,A Stengel

Brain research(2020)

引用 15|浏览13
暂无评分
摘要
Phoenixin is a recently discovered peptide, which has been associated with reproduction, anxiety and food intake. Based on a considerable co-localization it has been linked to nesfatin-1, with a possible antagonistic mode of action. Since nesfatin-1 is known to play a role in anxiety and the response to stress, this study aims to investigate the effects of a well-established psychological stress model, restraint stress, on phoenixin-expressing brain nuclei and phoenixin expression in rats. Male Sprague-Dawley rats were subjected to restraint stress (n = 8) or left undisturbed (control, n = 6) and the brains processed for c-Fos- and phoenixin immunohistochemistry. The number of c-Fos expressing cells was counted and phoenixin expression assessed semiquantitatively. Restraint stress significantly increased c-Fos expression in the dorsal motor nucleus of vagus nerve (DMN, 52-fold, p < 0.001), raphe pallidus (RPa, 15-fold, p < 0.001), medial part of the nucleus of the solitary tract (mNTS, 16-fold, p < 0.001), central amygdaloid nucleus, medial division (CeM, 9-fold, p = 0.01), supraoptic nucleus (SON, 9-fold, p < 0.001) and the arcuate nucleus (Arc, 2.5-fold, p < 0.03) compared to control animals. Also phoenixin expression significantly increased in the DMN (17-fold, p < 0.001), RPa (2-fold, p < 0.001) and mNTS (1.6-fold, p < 0.001) with positive correlations between c-Fos and phoenixin (r = 0.74-0.85; p < 0.01) in these nuclei. This pattern of activation suggests an involvement of phoenixin in response to restraint stress. Whether phoenixin mediates stress effects or is activated in a counterbalancing fashion will have to be further investigated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要