MicroRNA-375 overexpression disrupts cardiac development of Zebrafish ( Danio rerio ) by targeting notch2

PROTOPLASMA(2020)

Cited 9|Views15
No score
Abstract
MicroRNAs are small noncoding RNAs that are important for proper cardiac development. In our previous study of fetuses with ventricular septal defects, we discovered that microRNA-375 (miR-375) is obviously upregulated compared with that in healthy controls. Our study also confirmed that miR-375 is crucial for cardiomyocyte differentiation. This research mainly focused on the biological significance and mechanism of miR-375 using a zebrafish model. We injected zebrafish embryos with 1–2 nl of a miR-375 mimic at various concentrations (0/2/4/8 μM) or with negative control. The deformation and mortality rates were separately assessed. The different expression levels of miR-375 and related genes were examined by qRT-PCR, and luciferase assays and in situ hybridization were used to clarify the mechanism of miR-375 during embryonic development. Overexpression of miR-375 disrupted the cardiac development of zebrafish embryos. Disruption of miR-375 led to a decreased heart rate, pericardial edema, and abnormal cardiac looping. Various genes involved in cardiac development were downregulated due to the overexpression of miR-375. Moreover, the NOTCH signaling pathway was affected, and the luciferase reporter gene assays confirmed notch2 , which was predicted by bioinformatics analysis, as the target gene of miR-375. Our findings demonstrated that the overexpression of miR-375 is detrimental to embryonic development, including cardiac development, and can partially simulate a multisystemic disorder. MiR-375 has an important role during cardiac morphogenesis of zebrafish embryos by targeting notch2 , indicating its potential as a diagnostic marker.
More
Translated text
Key words
miR-375,Cardiac development,Overexpression,notch2
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined