Multilocus sequence typing characterizes diversity of Ureaplasma diversum strains, and intra-species variability induces different immune response profiles

BMC Veterinary Research(2020)

Cited 4|Views18
No score
Abstract
Ureaplasma diversum is a pathogen found in the genital tract of cattle and associated with genital disorders such as infertility, placentitis, abortion, birth of weak calves, low sperm motility, seminal vesiculitis and epididymitis. There are few studies evaluating the genetic diversity of U. diversum strains and their influence on the immune response in cattle. Therefore, to better understand genetic relationships of the pathogenicity of U. diversum, a multilocus sequence typing (MLST) scheme was performed to characterize the ATCC 49782 strain and another 40 isolates recovered from different Brazilian states. Primers were designed for housekeeping genes ftsH, polC, rpL22, rpoB, valS and ureA and for virulence genes, phospholipase D (pld), triacylglycerol lipase (tgl), hemolysin (hlyA), MIB-MIP system (mib,mip), MBA (mba), VsA (VsA) and ribose transporter (tABC). PCRs were performed and the targeted gene products were purified and sequenced. Sequence types (STs), and clonal complexes (CCs) were assigned and the phylogenetic relationship was also evaluated. Thus, a total of 19 STs and 4 CCs were studied. Following the molecular analysis, six isolates of U. diversum were selected, inoculated into bovine monocyte/macrophage culture and evaluated for gene expression of the cytokines TNF-α, IL-1, IL-6, IL-10 and IL-17. Differences were detected in the induction of cytokines, especially between isolates 198 and BA78, promoted inflammatory and anti-inflammatory profiles, respectively, and they also differed in virulence factors. It was observed that intra-species variability between isolates of U. diversum can induce variations of virulent determinants and, consequently, modulate the expression of the triggered immune response.
More
Translated text
Key words
Mollicutes,Genetic diversity,Sequence type,Clonal complex,Gene expression,Cytokines
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined