Stacked sills forming a deep melt-mush feeder conduit beneathAxial Seamount

Geology(2020)

引用 22|浏览29
暂无评分
摘要
Magmatic systems are composed of melt accumulations and crystal mush that evolve with melt transport, contributing to igneous processes, volcano dynamics, and eruption triggering. Geophysical studies of active volcanoes have revealed details of shallow-level melt reservoirs, but little is known about fine-scale melt distribution at deeper levels dominated by crystal mush. Here, we present new seismic reflection images from Axial Seamount, northeastern Pacific Ocean, revealing a 3-5-km-wide conduit of vertically stacked melt lenses, with near-regular spacing of 300-450 m extending into the inferred mush zone of the mid-to-lower crust. This column of lenses underlies the shallowest melt-rich portion of the upper-crustal magma reservoir, where three dike intrusion and eruption events initiated. The pipe-like zone is similar in geometry and depth extent to the volcano inflation source modeled from geodetic records, and we infer that melt ascent by porous flow focused within the melt lens conduit led to the inflation-triggered eruptions. The multiple near-horizontal lenses are interpreted as melt-rich layers formed via mush compaction, an interpretation supported by one-dimensional numerical models of porous flow in a viscoelastic matrix.
更多
查看译文
关键词
stacked sills,axial seamount,forming,melt-mush
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要