Core collapse in massive scalar-tensor gravity

PHYSICAL REVIEW D(2020)

引用 20|浏览77
暂无评分
摘要
This paper provides an extended exploration of the inverse-chirp gravitational-wave signals from stellar collapse in massive scalar-tensor gravity reported in [Phys. Rev. Lett. 119, 201103]. We systematically explore the parameter space that characterizes the progenitor stars, the equation of state, and the scalar-tensor theory of the core collapse events. We identify a remarkably simple and straightforward classification scheme of the resulting collapse events. For any given set of parameters, the collapse leads to one of three end states: a weakly scalarized neutron star, a strongly scalarized neutron star, or a black hole, possibly formed in multiple stages. The latter two end states can lead to strong gravitational-wave signals that may be detectable in present continuous-wave searches with ground-based detectors. We identify a very sharp boundary in the parameter space that separates events with strong gravitational-wave emission from those with negligible radiation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要