A Flexible Film with SnS 2 Nanoparticles Chemically Anchored on 3D-Graphene Framework for High Areal Density and High Rate Sodium Storage.

SMALL(2020)

引用 38|浏览11
暂无评分
摘要
The design and construction of flexible electrodes that can function at high rates and high areal capacities are essential regarding the practical application of flexible sodium-ion batteries (SIBs) and other energy storage devices, which remains significantly challenging by far. Herein, a flexible and 3D porous graphene nanosheet/SnS2 (3D-GNS/SnS2) film is reported as a high-performance SIB electrode. In this hybrid film, the GNS/SnS2 microblocks serve as pillars to assemble into a 3D porous and interconnected framework, enabling fast electron/ion transport; while the GNS bridges the GNS/SnS2 microblocks into a flexible framework to provide satisfactorily mechanical strength and long-range conductivity. Moreover, the SnS2 nanocrystals, which chemically bond with GNS, provide sufficient active sites for Na storage and ensure the cycling stability. Consequently, this flexible 3D-GNS/SnS2 film exhibits excellent Na-storage performances, especially in terms of high areal capacity (2.45 mAh cm(-2)) and high rates with superior stability (385 mAh g(-1) at 1.0 A g(-1) over 1000 cycles with approximate to 100% retention). A flexible SIB full cell using this anode exhibits high and stable performance under various bending situations. Thus, this work provide a feasible route to prepare flexible electrodes with high practical viability for not only SIBs but also other energy storage devices.
更多
查看译文
关键词
electron,ion transport,flexible film,GNS-based microblocks,sodium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要