Doping effect in graphene-graphene oxide interlayer

SCIENTIFIC REPORTS(2020)

引用 23|浏览12
暂无评分
摘要
Interlayer coupling in graphene-based van der Waals (vdW) heterostructures plays a key role in determining and modulating their physical properties. Hence, its influence on the optical and electronic properties cannot be overlooked in order to promote various next-generation applications in electronic and opto-electronic devices based on the low-dimensional materials. Herein, the optical and electrical properties of the vertically stacked large area heterostructure of the monolayer graphene transferred onto a monolayer graphene oxide film are investigated. An effective and stable p-doping property of this structure is shown by comparison to that of the graphene device fabricated on a silicon oxide substrate. Through Raman spectroscopy and density functional theory calculations of the charge transport characteristics, it is found that graphene is affected by sustainable p-doping effects induced from underneath graphene oxide even though they have weak interlayer interactions. This finding can facilitate the development of various fascinating graphene-based heterostructures and extend their practical applications in integrated devices with advanced functionalities.
更多
查看译文
关键词
Materials science,Nanoscience and technology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要