Theory of autocalibration feasibility and precision in full Stokes polarization imagers

OPTICS EXPRESS(2020)

Cited 16|Views14
No score
Abstract
We propose a general theory of simultaneous estimation of Stokes vector and instrumental autocalibration of polarization imagers. This theory is applicable to any polarization imager defined by its measurement matrix. We illustrate it on the example of retardance autocalibration in a large class of polarization imagers based on rotating retarders and polarimeters. We show that although all these architectures can yield optimal estimation precision of the Stokes vector if they are properly configured, they do not have the same autocalibration capacity and have to be specifically optimized for that purpose. These results are important to determine the best compromise between autocalibration capacity and polarimetric precision in practical applications. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined