An Evolutionarily Conserved Helix Mediates Ameloblastin-Cell Interaction.

JOURNAL OF DENTAL RESEARCH(2020)

引用 9|浏览23
暂无评分
摘要
Ameloblastin (Ambn) has the potential to regulate cell-matrix adhesion through familiar cell-binding domains, but the proposed sequence motifs are not highly conserved across species. Here, we report that Ambn binds to ameloblast-like cell membranes through a highly evolutionary conserved amphipathic helix-forming (AH) motif encoded by exon 5. We applied high-resolution confocal microscopy to show colocalization of Ambn with ameloblast membrane surfaces in developing mouse incisors. Using a series of Ambn-derived peptides and Ambn variants, we showed that Ambn binds to cell membranes through a motif within the sequence encoded by exon 5. Using peptides derived from the N- or C-termini of this sequence, as well as Ambn variants that lacked or had a disrupted AH motif, we demonstrated that the AH motif located at the N-terminus of the sequence is involved in cell-Ambn adhesion. Sequence analysis revealed that this highly conserved AH motif is absent from other enamel matrix proteins, including amelogenin, enamelin, and amelotin. Collectively, these data suggest that Ambn binds to the cell surface membrane via a helix-forming motif and provide insight into the molecular mechanism and function of Ambn in enamel cell-matrix interaction.
更多
查看译文
关键词
tooth,enamel biomineralization,formation,cell-matrix interactions,biophysics,biochemistry,extracellular matrix
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要