Systematic Evaluation of Design Features Enables Efficient Selection of Π Electron-Stabilized Polymeric Micelles.

International Journal of Pharmaceutics(2020)

引用 11|浏览26
暂无评分
摘要
Polymeric micelles (PM) based on poly(ethylene glycol)-b-poly(N-2-benzoyloxypropyl methacrylamide) (mPEG-b-p(HPMA-Bz)) loaded with paclitaxel (PTX-PM) have shown promising results in overcoming the suboptimal efficacy/toxicity profile of paclitaxel. To get insight into the stability of PTX-PM formulations upon storage and to optimize their in vivo tumor-targeted drug delivery properties, we set out to identify a lead PTX-PM formulation with the optimal polymer composition. To this end, PM based on four different mPEG5k-b-p(HPMA-Bz) block copolymers with varying molecular weight of the hydrophobic block (17–3 kDa) were loaded with different amounts of PTX. The hydrodynamic diameter was 52 ± 1 nm for PM prepared using polymers with longer hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)17k and mPEG5k-b-p(HPMA-Bz)10k) and 39 ± 1 nm for PM composed of polymers with shorter hydrophobic blocks (mPEG5k-b-p(HPMA-Bz)5k and mPEG5k-b-p(HPMA-Bz)3k). The best storage stability and the slowest PTX release was observed for PM with larger hydrophobic blocks. On the other hand, smaller sized PM of shorter mPEG5k-b-p(HPMA-Bz)5k showed a better tumor penetration in 3D spheroids. Considering better drug retention capacity of the mPEG5k-b-p(HPMA-Bz)17k and smaller size of the mPEG5k-b-p(HPMA-Bz)5k as two desirable design features, we argue that PM based on these two polymers are the lead candidates for further in vivo studies.
更多
查看译文
关键词
Polymeric micelles,π-π stacking interactions,Paclitaxel,In vitro release kinetics,3D cell culture,Storage stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要