Boundaries of quantum supremacy via random circuit sampling

NPJ QUANTUM INFORMATION(2023)

引用 6|浏览14
暂无评分
摘要
Google's quantum supremacy experiment heralded a transition point where quantum computers can evaluate a computational task, random circuit sampling, faster than classical supercomputers. We examine the constraints on the region of quantum advantage for quantum circuits with a larger number of qubits and gates than experimentally implemented. At near-term gate fidelities, we demonstrate that quantum supremacy is limited to circuits with a qubit count and circuit depth of a few hundred. Larger circuits encounter two distinct boundaries: a return of a classical advantage and practically infeasible quantum runtimes. Decreasing error rates cause the region of a quantum advantage to grow rapidly. At error rates required for early implementations of the surface code, the largest circuit size within the quantum supremacy regime coincides approximately with the smallest circuit size needed to implement error correction. Thus, the boundaries of quantum supremacy may fortuitously coincide with the advent of scalable, error-corrected quantum computing.
更多
查看译文
关键词
Information theory and computation,Quantum information,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要