Searching For Sub-Gev Dark Matter In The Galactic Centre Using Hyper-Kamiokande

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS(2020)

引用 24|浏览6
暂无评分
摘要
Indirect detection of dark matter via its annihilation products is a key technique in the search for dark matter in the form of weakly interacting massive particles (WIMPs). Strong constraints exist on the annihilation of WIMPs to highly visible Standard Model final states such as photons or charged particles. In the case of s-wave annihilation, this typically eliminates thermal relic cross sections for dark matter of mass below O(10) GeV. However, such limits typically neglect the possibility that dark matter may annihilate to assumed invisible or hard-to-detect final states, such as neutrinos. This is a difficult paradigm to probe due to the weak neutrino interaction cross section. Considering dark matter annihilation in the Galactic halo, we study the prospects for indirect detection using the Hyper-Kamiokande (HyperK) neutrino experiment, for dark matter of mass below 1 GeV. We undertake a dedicated simulation of the HyperK detector, which we benchmark against results from the similar Super-Kamiokande experiment and HyperK physics projections. We provide projections for the annihilation cross-sections that can be probed by HyperK for annihilation to muon or neutrino final states, and discuss uncertainties associated with the dark matter halo profile. For neutrino final states, we find that HyperK is sensitive to thermal annihilation cross-sections for dark matter with mass around 20 MeV, assuming an NFW halo profile. We also discuss the effects of neutron tagging, and prospects for improving the reach at low mass.
更多
查看译文
关键词
dark matter theory, neutrino detectors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要