Novel Yttria-Stabilized Zirconium Oxide and Lithium Disilicate Coatings on Titanium Alloy Substrate for Implant Abutments and Biomedical Application

Julius Maminskas, Jurgis Pilipavicius, Edvinas Staisiunas, Gytis Baranovas, Milda Alksne, Povilas Daugela, Gintaras Juodzbalys

MATERIALS(2020)

引用 16|浏览4
暂无评分
摘要
This study aimed to create novel bioceramic coatings on a titanium alloy and evaluate their surface properties in comparison with conventional prosthetic materials. The highly polished titanium alloy Ti6Al4V (Ti) was used as a substrate for yttria-stabilized zirconium oxide (3YSZ) and lithium disilicate (LS2) coatings. They were generated using sol-gel strategies. In comparison, highly polished surfaces of Ti, yttria-stabilized zirconium oxide (ZrO2), polyether ether ketone (PEEK) composite, and poly(methyl methacrylate) (PMMA) were utilized. Novel coatings were characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM). The roughness by atomic force microscope (AFM), water contact angle (WCA), and surface free energy (SFE) were determined. Additionally, biocompatibility and human gingival fibroblast (HGF) adhesion processes (using a confocal laser scanning microscope (CLSM)) were observed. The deposition of 3YSZ and LS2 coatings changed the physicochemical properties of the Ti. Both coatings were biocompatible, while Ti-3YSZ demonstrated the most significant cell area of 2630 mu m(2) (p <= 0.05) and the significantly highest, 66.75 +/- 4.91, focal adhesions (FAs) per cell after 24 h (p <= 0.05). By contrast, PEEK and PMMA demonstrated the highest roughness and WCA and the lowest results for cellular response. Thus, Ti-3YSZ and Ti-LS2 surfaces might be promising for biomedical applications.
更多
查看译文
关键词
coatings,focal adhesions,implant abutments,roughness,zirconium oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要