Ultrafast Vibrational Dynamics Of A Trigonal Planar Anionic Probe In Ionic Liquids (Ils): A Two-Dimensional Infrared (2dir) Spectroscopic Investigation

JOURNAL OF CHEMICAL PHYSICS(2020)

引用 6|浏览11
暂无评分
摘要
A major impediment limiting the widespread application of ionic liquids (ILs) is their high shear viscosity. Incorporation of a tricyanomethanide (TCM-) anion in ILs leads to low shear viscosity and improvement of several characteristics suitable for large scale applications. However, properties including interactions of TCM- with the local environment and dynamics of TCM- have not been thoroughly investigated. Herein, we have studied the ultrafast dynamics of TCM- in several imidazolium ILs using linear IR and two-dimensional infrared spectroscopy techniques. The spectral diffusion dynamics of the CN stretching modes of TCM- in all ILs exhibit a nonexponential behavior with a short time component of similar to 2 ps and a long time component spanning similar to 9 ps to 14 ps. The TCM- vibrational probe reports a significantly faster relaxation of ILs compared to those observed previously using linear vibrational probes, such as thiocyanate and selenocyanate. Our results indicate a rapid relaxation of the local ion-cage structure embedding the vibrational probe in the ILs. The faster relaxation suggests that the lifetime of the local ion-cage structure decreases in the presence of TCM- in the ILs. Linear IR spectroscopic results show that the hydrogen-bonding interaction between TCM- and imidazolium cations in ILs is much weaker. Shorter ion-cage lifetimes together with weaker hydrogen-bonding interactions account for the low shear viscosity of TCM- based ILs compared to commonly used ILs. In addition, this study demonstrates that TCM- can be used as a potential vibrational reporter to study the structure and dynamics of ILs and other molecular systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要