Computation Of Atmospheric Concentrations Of Molecular Clusters From Ab Initio Thermochemistry

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS(2020)

Cited 0|Views1
No score
Abstract
The computational study of the formation and growth of atmospheric aerosols requires an accurate Gibbs free energy surface, which can be obtained from gas phase electronic structure and vibrational frequency calculations. These quantities are valid for those atmospheric clusters whose geometries correspond to a minimum on their potential energy surfaces. The Gibbs free energy of the minimum energy structure can be used to predict atmospheric concentrations of the cluster under a variety of conditions such as temperature and pressure. We present a computationally inexpensive procedure built on a genetic algorithm-based configurational sampling followed by a series of increasingly accurate screening calculations. The procedure starts by generating and evolving the geometries of a large set of configurations using semi-empirical models then refines the resulting unique structures at a series of high-level ab initio levels of theory. Finally, thermodynamic corrections are computed for the resulting set of minimum-energy structures and used to compute the Gibbs free energies of formation, equilibrium constants, and atmospheric concentrations. We present the application of this procedure to the study of hydrated glycine clusters under ambient conditions.
More
Translated text
Key words
Chemistry,Issue 158,quantum chemistry,ab initio,thermochemistry,atmospheric chemistry,computational chemistry,aerosols,cluster distribution,configurational sampling
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined