Bupivacaine-Induced Neurotoxicity Is Modulated by Epigenetic Axis of Long Noncoding RNA SNHG16 and Hsa-miR-132-3p

Neurotoxicity Research(2020)

引用 6|浏览3
暂无评分
摘要
Clinical application of local anesthetic reagent, liposomal bupivacaine (BUP), may cause irreversible damage to human nerve system. In this study, we explored the functional role of long non-coding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) in BUP-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were treated with BUP in vitro, whose dose-dependent effects on cell viability and SNHG16 expression were explored. SNHG16 was upregulated in SH-SY5Y cells. The protection of SNHG16 upregulation on BUP-induced neurotoxicity was examined by viability assay, apoptosis assay, and caspase activity assay, respectively. The endogenously competing target of SNHG16, human mature microRNA-132-3p (hsa-miR-132-3p), was explored by dual-luciferase assay and quantitative real-time PCR (qRT-PCR). Hsa-miR-132-3p was then further overexpressed in SNHG16-upregulated SH-SY5Y cells to explore its functional role in BUP-induced neurotoxicity. BUP induced dose-dependent cell death and SNHG16 downregulation in SH-SY5Y cells. Inversely, lentivirus-mediated SNHG16 upregulation mitigated cell death. In addition, SNHG16 upregulation rescued BUP-induced apoptosis and caspase 3/7 augmentation. Hsa-miR-132-3p was found to be reversely expressed with SNHG16 in BUP-treated SH-SY5Y cells. Overexpressing hsa-miR-132-3p reduced the protection of SNHG16 on BUP-induced neurotoxicity. We demonstrated that epigenetic axis of SNHG16/hsa-miR-132-3p had a functional role in regulating anesthesia-induced neurotoxicity in human lineage neural cells.
更多
查看译文
关键词
Bupivacaine, Neurotoxicity, lncRNA, SNHG16, miRNA, Hsa-miR-132-3p
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要