Ion Binding Properties of a Naturally Occurring Metalloantibody.

ANTIBODIES(2020)

引用 1|浏览6
暂无评分
摘要
LT1009 is a humanized version of murine LT1002 IgG1 that employs two bridging Ca2+ ions to bind its antigen, the biologically active lipid sphingosine-1-phosphate (S1P). We crystallized and determined the X-ray crystal structure of the LT1009 Fab fragment in 10 mM CaCl2 and found that it binds two Ca2+ in a manner similar to its antigen-bound state. Flame atomic absorption spectroscopy (FAAS) confirmed that murine LT1002 also binds Ca2+ in solution and inductively-coupled plasma-mass spectrometry (ICP-MS) revealed that, although Ca2+ is preferred, LT1002 can bind Mg2+ and, to much lesser extent, Ba2+. Isothermal titration calorimetry (ITC) indicated that LT1002 binds two Ca2+ ions endothermically with a measured dissociation constant (K-D) of 171 mu M. Protein and genome sequence analyses suggested that LT1002 is representative of a small class of confirmed and potential metalloantibodies and that Ca2+ binding is likely encoded for in germline variable chain genes. To test this hypothesis, we engineered, expressed, and purified a Fab fragment consisting of naive murine germline-encoded light and heavy chain genes from which LT1002 is derived and observed that it binds Ca2+ in solution. We propose that LT1002 is representative of a class of naturally occurring metalloantibodies that are evolutionarily conserved across diverse mammalian genomes.
更多
查看译文
关键词
antibodies,calcium,germline repertoire,inductively-coupled plasma-mass spectrometry,isothermal titration calorimetry,metalloantibodies,metalloproteins,protein engineering,X-ray crystallography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要