TW Hya: an old protoplanetary disc revived by its planet

Monthly Notices of the Royal Astronomical Society(2020)

引用 18|浏览22
暂无评分
摘要
Dark rings with bright rims are the indirect signposts of planets embedded in protoplanetary discs. In a recent first, an azimuthally elongated AU-scale blob, possibly a planet, was resolved with ALMA in TW Hya. The blob is at the edge of a cliff-like rollover in the dust disc rather than inside a dark ring. Here we build time-dependent models of TW Hya disc. We find that the classical paradigm cannot account for the morphology of the disc and the blob. We propose that ALMA-discovered blob hides a Neptune mass planet losing gas and dust. We show that radial drift of mm-sized dust particles naturally explains why the blob is located on the edge of the dust disc. Dust particles leaving the planet perform a characteristic U-turn relative to it, producing an azimuthally elongated blob-like emission feature. This scenario also explains why a 10 Myr old disc is so bright in dust continuum. Two scenarios for the dust-losing planet are presented. In the first, a dusty pre-runaway gas envelope of a $\sim 40\, {\rm M}_{\oplus }$ Core Accretion planet is disrupted, e.g. as a result of a catastrophic encounter. In the second, a massive dusty pre-collapse gas giant planet formed by Gravitational Instability is disrupted by the energy released in its massive core. Future modelling may discriminate between these scenarios and allow us to study planet formation in an entirely new way – by analysing the flows of dust and gas recently belonging to planets, informing us about the structure of pre-disruption planetary envelopes.
更多
查看译文
关键词
planets and satellites: formation,protoplanetary discs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要