Chlorella vulgaris on the cathode promoted the performance of sediment microbial fuel cells for electrogenesis and pollutant removal

Science of The Total Environment(2020)

Cited 32|Views7
No score
Abstract
The lack of electron acceptors in cathode has limited the widespread application of sediment microbial fuel cells (SMFCs). In this study, Chlorella vulgaris (C. vulgaris) was added to the cathode to produce oxygen as an electron acceptor. The synergistic effects between C. vulgaris and electrogenic microorganisms in SMFCs were investigated, and were shown to enhance biodegradation of organic matter in sediments and convert chemical energy into electrical energy. Results showed that the addition of C. vulgaris on the cathode of SMFCs significantly reduced their internal resistance. The low algae concentration SMFC group reduced the initial internal resistance by 67.4% under illumination and produced a maximum power density of 5.17 W/m3, which was 6 times higher than that of SMFCs without addition of C. vulgaris. We also obtained organic matter removal efficiencies 37.2% higher after 16 days, which accelerated the startup time for three times. It was demonstrated that IEF-N and OP, respectively, were forms of nitrogen and phosphorus removed by SMFCs. Additionally, high-throughput sequencing of microbial communities indicated that C. vulgaris increased the abundance of electrogenic bacteria (Geobacter and Desulfobulbaceae) in the anode and types of photosynthetic bacteria that support oxygen production in the cathode. The combined application of microalgae- and SMFC-based technologies offer a promising remediation approach for organically-contaminated sediments.
More
Translated text
Key words
Chlorella vulgaris,Sediment microbial fuel cells,Electricity generation,Decontamination,Synergistic relationship
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined