Experimental Evaluation Of Texture Change During Grain Growth In Electrical Steel Sheets And Its Prediction By Phase Field Simulation

TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN(2020)

Cited 1|Views12
No score
Abstract
Electrical steel sheets require an increase in grain diameter in order to reduce iron loss. Texture changes during grain growth also affect iron loss. Therefore, it is important for the improvement in magnetic properties to control texture changes during grain growth. Especially, the texture prediction from the initial recrystallized structure is industrially useful. Our goal is the texture prediction by phase field simulation method. In this study, we first investigated experimentally the texture change during grain growth in Fe-0.5% Si and Fe-3.3% Si steels to get the systematic knowledge and the mechanism behind. Then, experimental results were compared with the predicted ones obtained by exploiting the multi-phase field (MPF) simulation.In the experimental results, in Fe-0.5%Si alloy, {111}< 112 > component further developed during grain growth. While in the case of Fe-3.3%Si alloy, {411}< 148 > component significantly developed by consuming {111}< 112 > component during grain growth. In both cases, the mechanism for the texture change during grain growth could be commonly explained by size advantage. The MPF simulation for both cases succeeded in reproducing the experimental results in terms of the texture changes during grain growth. However, the simulated texture changes were slightly smaller than that of experiment, presumably due to the difference in dimension; i.e. two dimension in MPF simulation and three dimension in experiment. Thus, the validity of the prediction of texture change exploiting MPF simulation was verified.
More
Translated text
Key words
Fe-Si alloy,electrical steel sheet,grain growth,size advantage,texture,Phase-field-simulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined