Mesoporous Octahedron-Shaped Tricobalt Tetroxide Nanoparticles for Photocatalytic Degradation of Toxic Dyes

ACS OMEGA(2020)

引用 89|浏览15
暂无评分
摘要
The present article reports a facile approach to fabrication of mesoporous octahedron-shaped tricobalt tetroxide nanoparticles (Co3O4 NPs) with a very narrow size distribution for eco-friendly remediation of toxic dyes. Co3O4 NPs were fabricated by a sol-gel process using cobalt chloride hexahydrate (CoCl2 center dot 6H(2)O) and monosodium succinate (C4H5O4Na) as a chelating/structure-directing agent and sodium dodecyl sulfate as a surfactant. Moreover, the phase structure, elemental composition, and thermal and morphological facets of Co3O4 NPs were investigated using XRD, FT-IR, EDS, Raman, XPS, TGA, SEM, and TEM techniques. The face-centered cubic spinel crystalline structure of the Co3O4 NPs was confirmed by XRD and SEM, and TEM analysis revealed their octahedron morphology with a smooth surface. Moreover, the narrow pore size distribution and the mesoporous nature of the Co3O4 NPs were confirmed by Brunauer-Emmett-Teller measurements. The photocatalytic activity of Co3O4 NPs for degradation of methyl red (MR), Eriochrome Black-T (EBT), bromophenol blue (BPB), and malachite green (MG) was examined under visible light irradiation, and the kinetics of the dye degradation was pseudo-zero-order with the rate constant in the order of MR > EBT > MG > BPB. Furthermore, the mechanism of photo-disintegration mechanism of the dye was examined by a scavenging test using liquid chromatography-mass chromatography, and its excellent photodegradation activities were attributed to the photogenerated holes (h(+)), superoxide (O-2(-)) anions, and hydroxyl ((OH)-O-center dot) radicals. Finally, the synergistic effect of the nano-interconnected channels with octahedron geometry, mesoporous nature, and charge transfer properties along with photogenerated charge separations leads to an enhanced Co3O4 photocatalytic activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要