Melatonin attenuates 17β-trenbolone induced insomnia-like phenotype and movement deficiency in zebrafish.

Chemosphere(2020)

引用 3|浏览39
暂无评分
摘要
17β-trenbolone (17β-TBOH) is one of the dominant metabolites of trenbolone acetate, which is widely applied in beef cattle operations around the globe. The effects of environmental concentrations of 17β-trenbolone on the early development of zebrafish embryos have received very little attention. Melatonin could regulate sleep-wake cycle and plays a protective role in various adverse conditions. Here, environmentally realistic concentrations of 17β-trenbolone (1 ng/L, 10 ng/L, 50 ng/L) has been exposure to zebrafish embryos at 2 h postfertilization (hpf). The results showed that 10 ng/L and 50 ng/L 17β-trenbolone disturbed the distribution of caudal primary motoneurons and downregulated expression of motoneuron development related genes along with locomotion decreasing. While melatonin could recover the detrimental effects caused by 17β-trenbolone. Interestingly, 17β-trenbolone exposure increased waking activity and decreased rest even in a low dose (1 ng/L). Moreover, it upregulated hypocretin/orexin (Hcrt) signaling which promotes wakefulness. Melatonin restored the insomnia-like alternation induced by 17β-trenbolone exposure. Collectively, we conclude that 17β-trenbolone disturbed motoneuron development and altered sleep/wake behavior, while melatonin could alleviate the deleterious influence on motoneuron development and recover the circadian rhythm.
更多
查看译文
关键词
Zebrafish,17β-trenbolone,Melatonin,Sleep/wake behavior,Locomotion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要