Directional Light Emission from Layered Metal Halide Perovskite Crystals.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2020)

引用 22|浏览16
暂无评分
摘要
Metal halide perovskites are being increasingly explored for use in light-emitting diodes (LEDs), with achievements in efficiency and brightness charted across the spectrum. One path to further boosting the fraction of useful photons generated by injected electrical charges will be to tailor the emission patterns of devices. Here we investigate directional emission from layered metal halide perovskites. We quantify the proportion of inplane versus out-of-plane transition dipole components for a suite of layered perovskites. We find that certain perovskite single crystals have highly anisotropic emissions and up to 90% of their transition dipole in-plane. For thin films, emission anisotropy increases as the nominal layer thickness decreases and is generally greater with butylammonium cations than with phenethylammonium cations. Numerical simulations reveal that anisotropic emission from layered perovskites in thin-film LEDs may lead to external quantum efficiencies of 45%, an absolute gain of 13% over equivalent films with isotropic emitters.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要