Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans.

PLOS GENETICS(2020)

引用 34|浏览50
暂无评分
摘要
Author summary Sounds are perceived by auditory sensory cells, owing to tissues surrounding them, including the cochlear lateral wall. Part of the cochlear lateral wall, the stria vascularis, is critical for production and maintenance of inner-ear fluid with a high potassium concentration, and for generating the positive voltage in the inner ear, important for sound perception, by stimulating secretion of potassium from marginal cells. The gene SLC12A2 encodes a protein involved in sodium, potassium, and chloride transport essential for proper function of specific cells in the stria vascularis; however, human variants of SLC12A2 have not previously been associated with hearing loss. By comprehensive genetic analysis of protein-coding sequences, we identified four candidate changes in SLC12A2 in four families with congenital, severe-to-profound hearing loss. Intriguingly, all four genetic variants were either within or at the 3'-splice site of the exon 21 which encodes a part of the carboxy terminal intracellular domain of SLC12A2. Experiments in cultured cells showed that skipping or mutation of exon 21 significantly decreased chloride influx mediated by the SLC12A2 protein. Overall, our results strongly indicate that mutations influencing exon 21 of SLC12A2 represent a novel mechanism underlying deafness in humans. Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl(-) cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3'-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl- influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.
更多
查看译文
关键词
hereditary hearing loss,slc12a2,carboxy-terminal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要