Non-Hermitian Kibble-Zurek mechanism with tunable complexity in single-photon interferometry

PRX quantum(2020)

引用 21|浏览21
暂无评分
摘要
Non-Hermitian descriptions of quantum matter have seen impressive progress recently, with major advances in understanding central aspects such as their topological properties or the physics of exceptional points, the non-Hermitian counterpart of critical points. Here, we use single-photon interferometry to reconstruct the non-Hermitian Kibble-Zurek mechanism and its distinct scaling behavior for exceptional points, by simulating the defect production upon performing slow parameter ramps. Importantly, we are able to realise also higher-order exceptional points, providing experimental access to their theoretically predicted characteristic Kibble-Zurek scaling behaviour. Our work represents a crucial step in increasing the experimental complexity of non-Hermitian quantum time-evolution. It thus also furthers the quest to move the frontier from purely single-particle physics towards increasingly complex settings in the many-body realm.
更多
查看译文
关键词
tunable complexity,non-hermitian,kibble-zurek,single-photon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要