A general carbonyl alkylative amination for tertiary amine synthesis

Nature(2020)

Cited 91|Views18
No score
Abstract
The ubiquity of tertiary alkylamines in pharmaceutical and agrochemical agents, natural products and small-molecule biological probes 1 , 2 has stimulated efforts towards their streamlined synthesis 3 – 9 . Arguably the most robust method for the synthesis of tertiary alkylamines is carbonyl reductive amination 3 , which comprises two elementary steps: the condensation of a secondary alkylamine with an aliphatic aldehyde to form an all-alkyl-iminium ion, which is subsequently reduced by a hydride reagent. Direct strategies have been sought for a ‘higher order’ variant of this reaction via the coupling of an alkyl fragment with an alkyl-iminium ion that is generated in situ 10 – 14 . However, despite extensive efforts, the successful realization of a ‘carbonyl alkylative amination’ has not yet been achieved. Here we present a practical and general synthesis of tertiary alkylamines through the addition of alkyl radicals to all-alkyl-iminium ions. The process is facilitated by visible light and a silane reducing agent, which trigger a distinct radical initiation step to establish a chain process. This operationally straightforward, metal-free and modular transformation forms tertiary amines, without structural constraint, via the coupling of aldehydes and secondary amines with alkyl halides. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of complex tertiary amines.
More
Translated text
Key words
Synthetic chemistry methodology,Reaction mechanisms,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined