Functional Metalloblock Copolymers for the Preparation and In Situ Functionalization of Porous Silica Films.

Langmuir : the ACS journal of surfaces and colloids(2020)

Cited 9|Views5
No score
Abstract
Stimuli-responsive mesoporous silica films were prepared by evaporation-induced self-assembly through the physical entrapment of a functional metalloblock copolymer structuring agent, which simultaneously served to functionalize the mesopore. After end-functionalization with a silane group, the applied functional metalloblock copolymers were covalently integrated into the silica mesopore wall. In addition, they were partly degraded after the formation of the mesoporous film, which enabled the precise design of accessible mesopores. These polymer-silica hybrid materials exhibited remarkable and gating ionic permselectivity and offer the potential for highly precise pore filling design and combination with high-throughput printing techniques. This in situ functionalization strategy of mesoporous silica using responsive metalloblock copolymers has the potential to improve how we approach the design of complex architectures at the nanoscale for tailored transport. This functionalization strategy paves the way for a variety of technologies based on molecular transport in nanoscale pores, including separation, sensing, catalysis, and energy conversion.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined