谷歌浏览器插件
订阅小程序
在清言上使用

Computational Prediction Of Mutational Effects On Sars-Cov-2 Binding By Relative Free Energy Calculations

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2020)

引用 68|浏览13
暂无评分
摘要
The ability of coronaviruses to infect humans is invariably associated with their binding strengths to human receptor proteins. Both SARS-CoV-2, initially named 2019-nCoV, and SARS-CoV were reported to utilize angiotensin-converting enzyme 2 (ACE2) as an entry receptor in human cells. To better understand the interplay between SARS-CoV-2 and ACE2, we performed computational alanine scanning mutagenesis on the "hotspot" residues at protein-protein interfaces using relative free energy calculations. Our data suggest that the mutations in SARS-CoV-2 lead to a greater binding affinity relative to SARS-CoV. In addition, our free energy calculations provide insight into the infectious ability of viruses on a physical basis and also provide useful information for the design of antiviral drugs.
更多
查看译文
关键词
mutational effects,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要