Capturing the Cardiac Injury Response of Targeted Cell Populations via Cleared Heart Three-Dimensional Imaging.

Journal of visualized experiments : JoVE(2020)

引用 3|浏览1
暂无评分
摘要
Cardiovascular disease outranks all other causes of death and is responsible for a staggering 31% of mortalities worldwide. This disease manifests in cardiac injury, primarily in the form of an acute myocardial infarction. With little resilience following injury, the once healthy cardiac tissue will be replaced by fibrous, non-contractile scar tissue and often be a prelude to heart failure. To identify novel treatment options in regenerative medicine, research has focused on vertebrates with innate regenerative capabilities. One such model organism is the neonatal mouse, which responds to cardiac injury with robust myocardial regeneration. In order to induce an injury in the neonatal mouse that is clinically relevant, we have developed a surgery to occlude the left anterior descending artery (LAD), mirroring a myocardial infarction triggered by atherosclerosis in the human heart. When matched with the technology to track changes both within cardiomyocytes and non-myocyte populations, this model provides us with a platform to identify the mechanisms that guide heart regeneration. Gaining insight into changes in cardiac cell populations following injury once relied heavily on methods such as tissue sectioning and histological examination, which are limited to two-dimensional analysis and often damage the tissue in the process. Moreover, these methods lack the ability to trace changes in cell lineages, instead providing merely a snapshot of the injury response. Here, we describe how technologically advanced methods in lineage tracing models, whole organ clearing, and three-dimensional (3D) whole-mount microscopy can be used to elucidate mechanisms of cardiac repair. With our protocol for neonatal mouse myocardial infarction surgery, tissue clearing, and 3D whole organ imaging, the complex pathways that induce cardiomyocyte proliferation can be unraveled, revealing novel therapeutic targets for cardiac regeneration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要