Two-body mobility edge in the Anderson-Hubbard model: molecular versus scattering states

arxiv(2020)

引用 0|浏览1
暂无评分
摘要
Most of our quantitative understanding of disorder-induced metal-insulator transitions comes from numerical studies of simple noninteracting tight-binding models, like the Anderson model in three dimensions. An important outstanding problem is the fate of the Anderson transition in the presence of additional Hubbard interactions of strength $U$ between particles. Based on large-scale numerics, we compute the position of the mobility edge for a system of two identical bosons or two fermions with opposite spin component. The resulting phase diagram in the interaction-energy-disorder space possesses a remarkably rich and counterintuitive structure, with multiple metallic and insulating phases. We show that this phenomenon originates from the molecular or scattering-like nature of the pair states available at given energy and disorder strength. The behavior of the disorder-averaged density of states of the effective model for the pair is also discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要