Significant enhancement of photo-Fenton degradation of ofloxacin over Fe-Dis@Sep due to highly dispersed FeC6 with electron deficiency.

The Science of the total environment(2020)

Cited 15|Views25
No score
Abstract
An efficient strategy for enhancing iron efficiency in heterogeneous Fenton reaction via the pyrolysis of ferrocene chemically modified sepiolite (Sep) was proposed in this study. Highly dispersed FeC6 on sepiolite (Fe-Dis@Sep) was synthesized as an efficient photo-Fenton catalyst for the visible light degradation of ofloxacin (OFX). It exhibits an excellent Fenton activity and stability towards OFX degradation. The pseudo-first order reaction rate constant of Fe-Dis@Sep was 5.1-fold higher than that of the supported catalyst with aggregated iron oxides prepared by traditional impregnation method (Fe-Agg@Sep). Based on TEM images and density functional theory (DFT) calculation, the enhanced Fenton activity of Fe-Dis@Sep was attributed to the unique incorporation of FeC6 on Sep via Si-O-C-Fe bond which not only favor the high dispersion of FeC6 with an electron deficiency but also promote Fe(III) to Fe(II) cycle via the formation of surface Fe-H2O2 complex. OH and O2- were identified as active species for OFX degradation in Fe-Dis@Sep-H2O2-Vis system. 98.7% of F and 97.0% of N in OFX was converted into F- and NO3- with a TOC removal efficiency of 89.35%. The possible degradation pathway of OFX was also proposed according to HPLC-MS results. Finally, the Fenton reaction mechanism over Fe-Dis@Sep was discussed.
More
Translated text
Key words
Advanced oxidation process,Photon-Fenton,Antibiotics,Ferrocene,High dispersion,Electron deficiency
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined