High-frequency rectification via chiral Bloch electrons

Science Advances(2020)

引用 97|浏览5
暂无评分
摘要
Rectification is a process that converts electromagnetic fields into a direct current. Such a process underlies a wide range of technologies such as wireless communication, wireless charging, energy harvesting, and infrared detection. Existing rectifiers are mostly based on semiconductor diodes, with limited applicability to small-voltage or high-frequency inputs. Here, we present an alternative approach to current rectification that uses the intrinsic electronic properties of quantum crystals without using semiconductor junctions. We identify a previously unknown mechanism for rectification from skew scattering due to the inherent chirality of itinerant electrons in time-reversal invariant but inversion-breaking materials. Our calculations reveal large, tunable rectification effects in graphene multilayers and transition metal dichalcogenides. Our work demonstrates the possibility of realizing high-frequency rectifiers by rational material design and quantum wave function engineering.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要