Epithelial domains and the primordial antennal nervous system of the embryonic grasshopper Schistocerca gregaria

Invertebrate Neuroscience(2020)

引用 3|浏览1
暂无评分
摘要
The antenna is a key sensory organ in insects. Factors which pattern its epithelium and the spacing of sensillae will play an important role in shaping its contribution to adaptive behavior. The antenna of the grasshopper S. gregaria has three major articulations: scape, pedicel, and flagellum. During postembryonic development, the flagellum lengthens as segments (so-called meristal annuli) are added at each molt. However, the five most apical annuli do not subdivide; thus, their epithelial domains must already be defined during embryogenesis. We investigated epithelial compartmentalization and its relationship to the developing primordial nervous system of the antenna by simultaneous immunolabeling against the epithelial cell surface molecule Lachesin, against neuron-specific horseradish peroxidase, and against the mitosis marker phospho-histone 3. We found that Lachesin is initially expressed in a highly ordered pattern of “rings” and a “sock” in the apical antennal epithelium of the early embryo. These expression domains appear in a stereotypic order and prefigure later articulations. Proliferative cells segregate into these developing domains and pioneer- and sensory-cell precursors were molecularly identified. Our study allows pioneer neurons, guidepost cells, and the earliest sensory cell clusters of the primordial nervous system to be allocated to their respective epithelial domain. As the apical-most five domains remain stable through subsequent development, lengthening of the flagellum must originate from more basal regions and is likely to be under the control of factors homologous to those which regulate boundary and joint formation in the antenna of Drosophila .
更多
查看译文
关键词
Grasshopper, Embryo, Antenna, Epithelial domains, Identified neurons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要