Fine particulate matter increases airway hyperresponsiveness through kallikrein-bradykinin pathway.

Ecotoxicology and environmental safety(2020)

Cited 14|Views17
No score
Abstract
Epidemiological studies have reported short-term fine particulate matter (PM2.5) exposure to increase incidence of asthma, related to the increase of airway hyperresponsiveness (AHR); however, the underlying mechanism remains unclear. Aim of this study was to elucidate the role of kallikrein in PM2.5-induced airway hyperresponsiveness and understand the underlying mechanism. Nose-only PM2.5 exposure system was used to generate a mouse model of airway hyperresponsiveness. Compared with the control group, PM2.5 exposure could significantly increase airway resistance, lung inflammation, kallikrein expression of bronchi-lung tissue and bradykinin (BK) secretion. However, these changes could be alleviated by kallikrein inhibitor. In addition,PM2.5 could increase the viability of human airway smooth muscle cells (hASMCs), accompanied by increased expression of kallikrein 14 (Klk14), bradykinin 2 receptor (B2R), bradykinin secretion and cytosol calcium level, while kallikrein 14 gene knockdown could significantly amelioratethe above response induced by PM2.5. Taken together, the data suggested kallikrein to play a key role in PM2.5-induced airway hyperresponsiveness, and that it could be a potential therapeutic target in asthma.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined