Magnetic-field-induced FM-AFM metamagnetic transition and strong negative magnetoresistance in Mn$_{1/4}$NbS$_2$ under pressure

arxiv(2020)

引用 0|浏览42
暂无评分
摘要
Transition metal dichalcogenides (TMDC) stand out with their high chemical stability and the possibility to incorporate a wide range of magnetic species between the layers. The behavior of conduction electrons in such materials intercalated by 3d-elements is closely related to their magnetic properties and can be sensitively controlled by external magnetic fields. Here, we study the magnetotransport properties of NbS$_2$ intercalated with Mn, Mn$_{1/4}$NbS$_2$, demonstrating a complex behavior of the magnetoresistance and of the ordinary and anomalous Hall resistivities. Application of pressure as tuning parameter leads to the drastic changes of the magnetotransport properties of Mn$_{1/4}$NbS$_2$ exhibiting large negative magnetoresistance up to $65 \%$ at 7.1 GPa. First-principles electronic structure calculations indicates pressure-induced transition from ferromagnetic to antiferromagnetic state. Theoretical calculations accounting for the finite temperature magnetic properties of Mn$_{1/4}$NbS$_2$ suggest a field-induced metamagnetic ferromagnetic-antiferromagnetic transition as an origin of the large negative magentoresistance. These results inspire the development of materials for spintronic applications based on intercalated TMDC with a well controllable metamagnetic transition.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要