Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea.

Environmental pollution (Barking, Essex : 1987)(2020)

Cited 37|Views29
No score
Abstract
Evaluation of the effectiveness of best management practices for reducing nitrate leaching in agricultural systems requires detailed water and nitrogen (N) budgets. A 3-year field experiment using 15 auto-weighing lysimeters was set up to quantify nitrate leaching, crop evapotranspiration (ET), and N and water use efficiencies within an intensive wheat-maize rotation system in the Northern China Plain. The lysimeter consists mainly of the following: (1) high-resolution weighing cells; (2) ceramic solution samplers for soil solutions collection; and (3) circular stainless steel leaching trays for collecting seepage water. Two N fertilizer types were applied at two rates (150 and 225 kg N hm-2 for each crop) with no-N applied as the control. The N fertilizer types were monotypic un-coated urea and a blend product with controlled-release urea (CRU) and un-coated urea. The results indicate that when compared with un-coated urea at the same application rate, the blend product greatly improved water and N use efficiencies with significant increase in yields and crop ET as well as reduction of nitrate accumulation and leaching in the soil profile (p < 0.05). This was mostly because the blend product consistently supplied N to meet crop demands over the entire growth season. The study implied that effective best management practices to control nitrate leaching should be based on technically sound fertilization and irrigation schemes in terms of timing, rate, and fertilizer type to suit site specific conditions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined