Improvement of PVDF nanofiltration membrane potential, separation and anti -fouling performance by electret treatment

SCIENCE OF THE TOTAL ENVIRONMENT(2020)

引用 10|浏览26
暂无评分
摘要
Electret treatment was a simple method to enhance the charge-electrode properties of polyvinylidene fluoride (PVDF) materials due to the increase of space charge and polarization charge of PVDF materials. The polarization charge was due to the electric dipole orientation change in loose nanofiltration PVDF membrane, which increased the electric dipole moment and improved the polarity of surface potential. Importantly, electret charges were less affected by ambient humidity. Therefore, the electret treatment could improve the surface negative potential of loose nanofiltration PVDF membrane, so as to improve its anti-fouling performance under certain conditions. Based on the above theoretical analysis, the influence and mechanism of the electret treatment on the surface potential, morphology, structure, hydrophilicity and anti-pollution performance of PVDF membrane were studied in this manuscript. When the electret time was 7.5 min and the electret voltage was 30 kV, the surface negative potential was the highest. The content of beta phase crystals was 39.1%, which was 12.18% higher than that of untreated membrane. In addition, the surface morphology of PVDF membrane did not change significantly, but the water contact angle decreased slightly, and the pore size increased by 0.36-0.75 nm. Importantly, the flux and the rejection of dye and BSA increased to some extent, and the maximum rejection rate and water flux were increased by 10.34% and 20.25%, respectively. Through the cyclic filtration test and analysis, the antifouling performance of membrane was increased due to electrostatic repulsion. (C) 2020 Published by Elsevier B.V.
更多
查看译文
关键词
Electret treatment,Loose nanofiltration,PVDF membrane,Pore size,Potential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要