Study on the influence of small molecular gases on toluene reforming in molten salt

Renewable Energy(2020)

Cited 3|Views101
No score
Abstract
The upgrading of tar is a key issue for the sufficient application of biowaste pyrolysis technology. Molten salt, with high migration and diffusion of ions to prevent the deactivation of coke deposition of tar reforming functional metals, is considered as a feasible catalytic reaction medium and heat carrier for the upgrading of tar. The present study investigated the interactions between small molecular pyrolysis gases (including H2, CO, CH4) and main tar model compound in ternary carbonate eutectics (Li2CO3–Na2CO3–K2CO3). The results demonstrated that H2 could be decomposed to produce H radicals, promoting the conversion of toluene into gaseous products. CO32− could consume H radicals required by toluene cracking, making the process toluene polymerized to polycyclic aromatic hydrocarbons be strengthened. On the other hand, CO would react with OH radicals to produce H radicals and could enhance gas-generating process. In addition, toluene could react with CO to form benzaldehyde and phenylacetaldehyde. With the addition of CH4, more H radicals were supposed to be consumed, and toluene cracking process was further inhibited. Finally, the effect sequence of small molecular gases (H2 > CH4 > CO) on toluene reforming reaction was authenticated by investigating the impacts of introducing any two gases in toluene reforming.
More
Translated text
Key words
Biowaste,Molten carbonates,Tar reforming,Small molecular gas,Interaction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined