MobileDA: Towards Edge Domain Adaptation

IEEE Internet of Things Journal(2020)

引用 49|浏览49
暂无评分
摘要
Deep neural networks (DNNs) have made significant advances in computer vision and sensor-based smart sensing. DNNs achieve prominent results based on standard data sets and powerful servers, whereas, in real applications with domain-shift data and resource-constrained environments such as Internet-of-Things (IoT) devices in the edge computing, DNNs are likely to have degraded performance in terms of accuracy and efficiency. To this end, we develop the MobileDA framework that learns transferable features while keeping the simple structure of the deep model. Our method allows a novel teacher network trained in the server to distill the knowledge for a student network running in the edge device, which is achieved by a cross-domain distillation. Leveraging unlabeled data in the new environment, our student model amends the feature learning to be domain invariant, then being our objective model running in the edge device. Our approach is evaluated on a challenging IoT-based WiFi gesture recognition scenario, and three classic visual adaptation benchmarks. The empirical studies corroborate the effectiveness of distillation for domain transfer, and the overall results show that our model achieves state-of-the-art performance merely using a simple network.
更多
查看译文
关键词
Deep learning,domain adaptation,edge computing,transfer smart sensing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要