The Bloch Equation For Spin Dynamics In Electron Storage Rings: Computational And Theoretical Aspects

INTERNATIONAL JOURNAL OF MODERN PHYSICS A(2019)

引用 3|浏览0
暂无评分
摘要
In this paper, we describe our work on spin polarization in high-energy electron storage rings which we base on the Full Bloch equation (FBE) for the polarization density and which aims towards the e(-) - e(+) option of the proposed Future Circular Collider (FCC-ee) and the proposed Circular Electron Positron Collider (CEPC). The FBE takes into account non spin-flip and spin-flip effects due to synchrotron radiation including the spin-diffusion effects and the Sokolov-Ternov effect with its Baier-Katkov generalization as well as the kinetic-polarization effect. This mathematical model is an alternative to the standard mathematical model based on the Derbenev-Kondratenko formulas. For our numerical and analytical studies of the FBE, we develop an approximation to the latter to obtain an effective FBE. This is accomplished by finding a third mathematical model based on a system of stochastic differential equations (SDEs) underlying the FBE and by approximating that system via the method of averaging from perturbative ODE theory. We also give an overview of our algorithm for numerically integrating the effective FBE. This discretizes the phase space using spectral methods and discretizes time via the additive Runge-Kutta (ARK) method which is a high-order semi-implicit method. We also discuss the relevance of the third mathematical model for spin tracking.
更多
查看译文
关键词
Electron storage rings, spin polarized beams, polarization density, FCC, CEPC, stochastic differential equation, method of averaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要